Selasa, 11 Juli 2023

APLIKASI FLIP-FLOP

SAFETY ATM



1. Tujuan [Kembali]

a. Dapat mengaplikasikan Flip Flop dalam rangkaian
b. .Memahami bagaimana prinsip kerja Flip Flop yang digunakan

2. Alat dan Bahan [Kembali]

Alat 

Instrumena. DC Voltmeter 



Spesifikasi dan keterangan Probe DC Volemeter


Generator

a. Power Supply

Spesifikasi:


b. Baterai 





Spesifikasi dan Pinout Baterai

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr

Bahan

a. Resistor


Spesifikasi :

b. dioda



Spesifikasi :


c. Transistor NPN


Spesifikasi
  • Type - NPN
  • Collector-Emitter Voltage: 35 V
  • Collector-Base Voltage: 35 V
  • Emitter-Base Voltage: 5 V
  • Collector Current: 2.5 A
  • Collector Dissipation - 10 W
  • DC Current Gain (hfe) - 100 to 200
  • Transition Frequency - 160 MHz
  • Operating and Storage Junction Temperature Range -55 to +150 °C
  • Package - TO-126


d. Op-Amp

PIN UA741





Komponen Input

a. Sensor Sentuh




Spesifikasi:
  • Operating Voltage: 2.0 - 5.5V
  • Operating Current(Vcc=3V):1.5 - 3.0μA
  • Operating Current(VDD=3V):3.5 - 7.0μA
  • Output Response Time: 60 - 220mS
  • Used Chipset: TTP223-BA6

b. Sensor Magnetik



Spesifikasi :

  • Operating Voltage: 3.3V to 5V DC
  • Output format: Digital switching output ( 0 and 1 )
  • LEDs indicating output and power
  • PCB Size: 32mm x 14mm
  • LM393 based design
  • Easy to use with Microcontrollers or even with normal Digital/Analog IC

c. HIH-5030





Spesifikasi ;
  • Output analog
  • Sensor kelembaban relatif
  • Akurasi kelembaban: ± 3% rh.
  • Pasokan 2,7 vdc sampai 5,5 vdc.
  • Smd.tertutup, dengan / tanpa filter hidrofobik

c. POT-HG

Spesifikasi Potentiometer:
  • Jenis: Rotary a.k.a Radio POT
  • Tersedia dalam nilai resistansi yang berbeda seperti 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M.
  • Peringkat Daya: 0.3W
  • Tegangan Input Maksimum: 200Vdc
  • Kehidupan Rotasi: 2000K siklus 

d. Logicstate

Spesifikasi: 
2-In / 2-Out USB-C Audio Interface
2 x SSL-designed microphone preamps
Legacy 4K – analogue colour enhancement, inspired by classic SSL consoles
Professional, high-current grade headphone output
24-bit / 192 kHz AD/DA AKM Converters
Easy-to-use Monitor Mix Control
Balanced monitor outputs
SSL Production Pack software bundle
USB 2.0 bus-powered audio interface for Mac/PC

Pin out:


f. Sensor Vibration


Spesifikasi :
Vsuplai : DC 3.3V-5V
Arus : 15mA
Sensor : SW-420 Normally Closed
Output : digital
Dimensi : 3,8 cm x 1,3 cm x 0,7 cm
Berat : 10 g

g. Encoder IC 74147

Spesifikasi:
It operates at 4.5V to 5.5 DC voltage.
It delivers output current from low 70µA to high 8mA
It operates at the temperature from -55℃ to 70℃
Logic Case packaging type: DIP
Mounting Type: Through Hole

h. Demuxtiplexer IC 4556




Komponen Output

a. Dinamo/Motor


Spesifikasi:

b. Relay

Spesifikasi Relay: tegangan input 5 VDC, 12 VDC atau 48 VDC. Untuk common dan NO NC umumnya 220 vac dengan arus kerja 10 A.

c. Seven Segment



Spesifikasi:



d. Buzzer



Buzzer Features and Specifications

  • Rated Voltage: 6V DC
  • Operating Voltage: 4-8V DC
  • Rated current: <30mA
  • Sound Type: Continuous Beep
  • Resonant Frequency: ~2300 Hz 
  • Small and neat sealed package
  • Breadboard and Perf board friendly

e. LED



3. Dasar Teori [Kembali]

a. Sensor Sentuh



Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Grafik:

b. Sensor Magnet (Reed Switch)

Pengertian Sensor Magnet

Sensor magnet adalah sensor yang mudah terpengaruh dan peka terhadap medan magnet kemudian memberikan perubahan kondisi output. Prinsip kerja Sensor magnet yaitu akan aktif ketika konduktor mempengaruhi medan magnet, sehingga magnet tersebut tertolak atau tertarik sesuai dengan pengaruh konduktor yang diberikan. Disebut juga Relai Buluh adalah Alat yang akan terpengaruh Medan Magnet dan akan memberikan perubahan kondisi pada keluaran, seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet disekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap maupun uap.

Cara Kerja Magnet
Sensor ini akan bekerja ketika jenis konduktor berada/mempengaruhi keberadaan medan magnet sehingga magent dapat tertarik atau tertolak sesuai pengaruh yang diberikan.

Gambar Sensor Magnet


Grafik:


c. Sensor Vibration


Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. 

Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
- Pembesaran sinyal getaran
- Penyaringan sinyal getaran dari sinyal pengganggu.
- Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
- Sensor penyimpangan getaran (displacement transducer)
- Sensor kecepatan getaran (velocity tranducer)
- Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
- Jenis sinyal getaran
-  Rentang frekuensi pengukuran
-  Ukuran dan berat objek getaran.
-  Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
- Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
     (power supply) dari luar, misalnya Velocity Transducer.
- Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.

Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :


d. HIH-5030


Sensor  kelembaban  adalah  suatu  alat  ukur  yang  digunakan  untuk  membantu dalam proses  pengukuran  atau  pendefinisian  yang  suatu  kelembaban  uap air yang  terkandung  dalam  udara. Jenis jenis  sensor  kelembaban  diantaranya  Cspacitive  Sensors,  Electrical  conductivity  Sensors, Thermal  Conductivity  Sensors,  Optical  Hygrometer,  dan  Oscillating  Hygrometer.
Dalam sensor ini terdapat sebuah thermistor tipe NTC (Negative Temperature Coefficient) untuk mengukur suhu, sebuah sensor kelembaban tipe resisitif dan sebuah mikrokontroller 8-bit yang mengolah kedua sensor tersebut dan mengirim hasilnya ke pin output dengan format single-wire bi-directional (kabel tunggal dua arah)
Grafik: 


d. Resistor



Resistor merupakan salah satu komponen yang digunakan dalam sebuah sirkuit atau rangkaian elektronik. Resistor berfungsi sebagai resistansi/ hambatan yang mampu mengatur atau mengendalikan tegangan dan arus listrik rangkaian. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm :




e. Op-Amp


Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Rangkaian dasar Op Amp




f. Transistor NPN

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 

NPN artinya tipe transistor yang bekerja atau mengalirkan arus negatif dengan positif sebagai biasnya. Transistor NPN mengalirkan arus negatif dari kaki emitor ke kolektor. Emitor berperan sebagai input dan kolektor berperan sebagai output apabila transistor diberikan arus positif pada basisnya.

 

·      Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

·      Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

·   Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor. 


 Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.



Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.


g. Relay




Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :
·       Electromagnet (Coil)
·       Armature
·       Switch Contact Point (Saklar)
·       Spring

h. Dioda


Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.
 
Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.

Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.

Dioda dapat dibagi menjadi beberapa jenis:

1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali

i. Motor

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

j. Seven Segment



Seven Segment Display adalah komponen Elektronika yang dapat menampilkan angka desimal melalui kombinasi-kombinasi segmennya. Seven Segment Display pada umumnya dipakai pada Jam Digital, Kalkulator, Penghitung atau Counter Digital, Multimeter Digital dan juga Panel Display Digital seperti pada Microwave Oven ataupun Pengatur Suhu Digital.


Pada LED 7 Segmen jenis Common Anode (Anoda), Kaki Anoda pada semua segmen LED adalah terhubung menjadi 1 Pin, sedangkan kaki Katoda akan menjadi Input untuk masing-masing Segmen LED. Kaki Anoda yang terhubung menjadi 1 Pin ini akan diberikan Tegangan Positif (+) dan Signal Kendali (control signal) akan diberikan kepada masing-masing Kaki Katoda Segmen LED.

k. Encoder 74147   


 IC 74147 adalah IC encoder digital yang mengkodekan 9 jalur input menjadi 4 jalur output. Ini juga dikenal sebagai encoder prioritas Desimal ke BCD. Istilah encoder prioritas digunakan karena menyediakan pengkodean untuk jalur data urutan tertinggi sebagai prioritas pertama. Itu dibuat menggunakan teknologi Transistor-Transistor Logic (TTL). Ini adalah IC encoder 10 hingga 4. Pada artikel ini, kita akan melihat Diagram Pin IC 74147, Diagram Sirkuit Internal IC 74147, dan tabel Truth atau tabel fungsi IC 74147.


l. Demux IC 4556


Demux IC 4556 merupakan jenis IC, dimana memiliki 2 input dan Input enable dengan aktif rendah. Dan 4 output yang mewakili angka decimal dari 0-3 dengan output berupa tegangan rendah. Demultiplexer  adalah perangkat yang mengambil  sinyal input yang tunggal yang memilih salah satu dari banyak output yang di data baris yang berhubungan ke input tunggal multimplexer. Satu multiplexer yang banyak dipakai dengan demultiplexer untuk melengkapkan dan  di ujung penerima. Bentuk multiplexer elektronik yang bisa dianggap sebagai beberapa masukan tunggal output switch yang demultiplexer sebagai bentuk masukan tunggak , ganda output switch .
Demultiplexer juga bisa diartikan dengan rangkaian logika yang menerima satu input data yang mendistrubusikan input tersebut yang beberapa output yang telah disediakan juga merupakan kebalikan multiplexer.  Selain IC dari keluarga TTL yang mendukung fungsi multiplexer adalah IC dari keluarga CMOS. Walaupun sebenarnya memang IC dari keluarga TTL lebih banyak yang mendukung fungsi multiplexer dibanding CMOS. Untuk prinsip kerja dari IC multiplexer keluarga CMOS ini sebenarnya sama saja dengan rangkaian multiplexer gerbang logika ataupun IC TTL. Yang pasti semuanya mengacu pada fungsi multiplexer yang sesungguhnya, yakni penetapan satu jalur keluaran yang mewakili dari banyaknya jalur input. Secara penggunaan simbol memang mungkin antara IC TTL dan CMOS memiliki perbedaan tapi sebenarnya aturan yang dijalankan adalah sama. Sebagai acuan anda jika tertarik untuk menggunakan IC dari keluarga CMOS khususnya seri 4556, saya sertakan juga tabel kebenarannya di bawah ini :Multiplexer dengan IC CMOS 4556. 

4. Percobaan [Kembali]

a. Prosedur Percobaan dan Rangkaian 

1. siapkan alat dan bahan yang akan digunakan
2. Susun rangkaian
3. Jalankan simulasi rangkaian

b. Prinsip Kerja


Pada saat sensor pir 1 maka outputnya akan masuk ke clock dari IC 4013. untuk pin Reset dari IC4013 di hubungkan ke sebuah button, kaki Set ke sebuah ground, kaki Q not di hubungkan ke kaki D dan di umpankan ke sebuah inverter yg kemudian masuk ke RL1, dan kaki Q hubungkan ke sebuah Decoder IC 7447 dan masuk ke pin A. maka input IC 7447 akan berlogika 1 0 0 0 1 1 1 dan akan ditampilkan pada layar segmen angka 1.

Pada saat sensor magnet berlogika 1 (ada pembobolan) maka outputnya akan masuk ke clock dari IC 4013. untuk pin Reset dari IC4013 di hubungkan ke sebuah button, kaki Set ke sebuah ground, kaki Q not di hubungkan ke kaki D dan di umpankan ke sebuah inverter yg kemudian masuk ke RL1, dan kaki Q hubungkan ke sebuah Decoder IC 7447 dan masuk ke pin B. maka input IC 7447 akan berlogika 0 1 0 0 1 1 1 dan akan ditampilkan pada layar segmen angka 3. 
Apabila sensor GP2D12 mendeteksi jarak <=32cm tegangan sebesar 5v akan masuk ke sensor gp2d12 menghasilkan output sebesar 1.06 masuk ke op amp non inverting kemudian dikuatkan sebanyak 2x sehingga menghasilkan output dengan tegangan sebesar 2.21. 

c. Video
1. Simulasi Rangkaian 


2. Merangkaian Rangkaian 

5. File Download [Kembali]

Tidak ada komentar:

Posting Komentar