Selasa, 11 Juli 2023

APLIKASI ENCODER DAN DECODER

Ruangan Toko Bunga Anggrek



1. Tujuan [Kembali]

     a. Mengetahui dan memahami sensor Touch, Rain, LDR dan HIH-5030
     b. Mengetahui dan memahami aplikasi Encoder dan Decoder
     c. Mengaplikasikan sensor Touch, Rain, LDR dan HIH-5030

2. Alat dan Bahan [Kembali]

Alat Instrumen

a. DC Voltmeter 



Spesifikasi dan keterangan Probe DC Volemeter

Generator

a. Power Supply

Spesifikasi:



b. Baterai 





Spesifikasi dan Pinout Baterai

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr

Bahan

a. Resistor


Spesifikasi :


b. dioda



Spesifikasi :


c. Transistor NPN


Spesifikasi
  • Type - NPN
  • Collector-Emitter Voltage: 35 V
  • Collector-Base Voltage: 35 V
  • Emitter-Base Voltage: 5 V
  • Collector Current: 2.5 A
  • Collector Dissipation - 10 W
  • DC Current Gain (hfe) - 100 to 200
  • Transition Frequency - 160 MHz
  • Operating and Storage Junction Temperature Range -55 to +150 °C
  • Package - TO-126

d. Op-Amp



Komponen Input

a. HIH-5030



Spesifikasi ;
  • Output analog
  • Sensor kelembaban relatif
  • Akurasi kelembaban: ± 3% rh.
  • Pasokan 2,7 vdc sampai 5,5 vdc.
  • Smd.tertutup, dengan / tanpa filter hidrofobik

Pin Out

b. LDR 




Spesifikasi :

c. POT-HG

Spesifikasi Potentiometer:
  • Jenis: Rotary a.k.a Radio POT
  • Tersedia dalam nilai resistansi yang berbeda seperti 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M.
  • Peringkat Daya: 0.3W
  • Tegangan Input Maksimum: 200Vdc
  • Kehidupan Rotasi: 2000K siklus 

d. Logicstate

Spesifikasi: 
2-In / 2-Out USB-C Audio Interface
2 x SSL-designed microphone preamps
Legacy 4K – analogue colour enhancement, inspired by classic SSL consoles
Professional, high-current grade headphone output
24-bit / 192 kHz AD/DA AKM Converters
Easy-to-use Monitor Mix Control
Balanced monitor outputs
SSL Production Pack software bundle
USB 2.0 bus-powered audio interface for Mac/PC

f. Sensor Sentuh



Spesifikasi:
  • Operating Voltage: 2.0 - 5.5V
  • Operating Current(Vcc=3V):1.5 - 3.0μA
  • Operating Current(VDD=3V):3.5 - 7.0μA
  • Output Response Time: 60 - 220mS
  • Used Chipset: TTP223-BA6

g. Sensor Rain


 Spesifikasi
1. Mengadopsi bahan dua sisi RF-04 berkualitas tinggi
2. Area: pelat nikel 5cm x 4cm di samping
3. Anti-oksidasi, anti-konduktivitas, dengan waktu penggunaan yang lama
4. Potensiometer menyesuaikan sensitivitas
5. Tegangan bekerja 5V
6. Format keluaran: Output switching digital (0&1) dan output tegangan analog  AO
7. Ukuran PCB papan kecil: 3,2 cm x 1,4 cm
8. Menggunakan komparator LM393 tegangan lebar

h. Encoder 74147   




i. Decoder (IC 7447)




Komponen Output

a. Dinamo/Motor


Spesifikasi:


b. Relay

Spesifikasi Relay : tegangan input 5 VDC, 12 VDC atau 48 VDC. Untuk common dan NO NC umumnya 220 vac dengan arus kerja 10 A.

c. Seven Segment



Spesifikasi:



3. Dasar Teori [Kembali]

a. HIH-5030


Sensor  kelembaban  adalah  suatu  alat  ukur  yang  digunakan  untuk  membantu dalam proses  pengukuran  atau  pendefinisian  yang  suatu  kelembaban  uap air yang  terkandung  dalam  udara. Jenis jenis  sensor  kelembaban  diantaranya  Cspacitive  Sensors,  Electrical  conductivity  Sensors, Thermal  Conductivity  Sensors,  Optical  Hygrometer,  dan  Oscillating  Hygrometer.
Dalam sensor ini terdapat sebuah thermistor tipe NTC (Negative Temperature Coefficient) untuk mengukur suhu, sebuah sensor kelembaban tipe resisitif dan sebuah mikrokontroller 8-bit yang mengolah kedua sensor tersebut dan mengirim hasilnya ke pin output dengan format single-wire bi-directional (kabel tunggal dua arah)
Grafik: 



b. LDR




CARA MENGUKUR LDR (LIGHT DEPENDENT RESISTOR) DENGAN MULTIMETER

Alat Ukur yang digunakan untuk mengukur nilai hambatan LDR adalah Multimeter dengan fungsi pengukuran Ohm (Ω). Agar Pengukuran LDR akurat, kita perlu membuat 2 kondisi pencahayaan yaitu pengukuran pada saat kondisi gelap dan kondisi terang. Dengan demikian kita dapat mengetahui apakah Komponen LDR tersebut masih dapat berfungsi dengan baik atau tidak.

Mengukur LDR pada Kondisi Terang

  1. Atur posisi skala selektor Multimeter pada posisi Ohm
  2. Hubungkan Probe Merah dan Probe Hitam Multimeter pada kedua kaki LDR (tidak ada polaritas)
  3. Berikan cahaya terang pada LDR
  4. Baca nilai resistansi pada Display Multimeter. Nilai Resistansi LDR pada kondisi terang akan berkisar sekitar 500 Ohm.

Mengukur LDR pada Kondisi Gelap

  1. Atur posisi skala selektor Multimeter pada posisi Ohm
  2. Hubungkan Probe Merah dan Probe Hitam Multimeter pada kedua kaki LDR (tidak ada polaritas)
  3. Tutup bagian permukaan LDR atau pastikan LDR tidak mendapatkan cahaya
  4. Baca nilai resistansi pada Display Multimeter. Nilai Resistansi LDR di kondisi gelap akan berkisar sekitar 200 KOhm.

Catatan :

  • Hasil Pengukuran akan berubah tergantung pada tingkat intesitas cahaya yang diterima oleh LDR itu sendiri.
  • Satuan terang cahaya atau Iluminasi (Illumination) adalah lux

Sebutan lain untuk LDR (Light Dependent Resistor) adalah Photo Resistor, Photo Conduction ataupun Photocell.rgerak secara acak mengikuti atom.

Grafik:

1. VCC: 5V DC
2. GND: ground
3. DO: high/low output


c. Resistor



Resistor merupakan salah satu komponen yang digunakan dalam sebuah sirkuit atau rangkaian elektronik. Resistor berfungsi sebagai resistansi/ hambatan yang mampu mengatur atau mengendalikan tegangan dan arus listrik rangkaian. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm :




d. Op-Amp


Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Rangkaian dasar Op Amp


e. Transistor NPN

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 

NPN artinya tipe transistor yang bekerja atau mengalirkan arus negatif dengan positif sebagai biasnya. Transistor NPN mengalirkan arus negatif dari kaki emitor ke kolektor. Emitor berperan sebagai input dan kolektor berperan sebagai output apabila transistor diberikan arus positif pada basisnya.

 

·      Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

·      Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

·   Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor. 


Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.



Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

f. Relay




Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :
·       Electromagnet (Coil)
·       Armature
·       Switch Contact Point (Saklar)
·       Spring

g. Dioda


Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.
 
Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.

Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.

Dioda dapat dibagi menjadi beberapa jenis:

1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali

h. Motor

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.


i. Sensor Sentuh



Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Grafik :


j. Sensor Rain

Sensor hujan adalah jenis sensor yang berfungsi untuk mendeteksi terjadinya hujan atau tidak, yang dapat difungsikan  dalam segala macam aplikasi dalam kehidupan sehari – hari. Dipasaran sensor ini dijual dalam bentuk module sehingga hanya perlu menyediakan kabel jumper untuk dihubungkan ke mikrokontroler atau Arduino.

Prinsip kerja dari module sensor ini yaitu pada saat ada air hujan turun dan mengenai panel sensor maka akan terjadi proses elektrolisasi oleh air hujan. Dan karena air hujan termasuk dalam golongan cairan elektrolit yang dimana cairan tersebut akan menghantarkan arus listrik.

Pada sensor hujan ini terdapat ic komparator yang dimana output dari sensor ini dapat berupa logika high dan low (on atau off). Serta pada modul sensor ini terdapat output yang berupa tegangan pula. Sehingga dapat dikoneksikan ke pin khusus Arduino yaitu Analog Digital Converter.

Dengan singkat kata, sensor ini dapat digunakan untuk memantau kondisi ada tidaknya hujan di lingkungan luar yang dimana output dari sensor ini dapat berupa sinyal analog maupun sinyal digital.

Grafik: 

k. Seven Segment



Seven Segment Display adalah komponen Elektronika yang dapat menampilkan angka desimal melalui kombinasi-kombinasi segmennya. Seven Segment Display pada umumnya dipakai pada Jam Digital, Kalkulator, Penghitung atau Counter Digital, Multimeter Digital dan juga Panel Display Digital seperti pada Microwave Oven ataupun Pengatur Suhu Digital.


Pada LED 7 Segmen jenis Common Anode (Anoda), Kaki Anoda pada semua segmen LED adalah terhubung menjadi 1 Pin, sedangkan kaki Katoda akan menjadi Input untuk masing-masing Segmen LED. Kaki Anoda yang terhubung menjadi 1 Pin ini akan diberikan Tegangan Positif (+) dan Signal Kendali (control signal) akan diberikan kepada masing-masing Kaki Katoda Segmen LED.

l. Encoder 74147   


 IC 74147 adalah IC encoder digital yang mengkodekan 9 jalur input menjadi 4 jalur output. Ini juga dikenal sebagai encoder prioritas Desimal ke BCD. Istilah encoder prioritas digunakan karena menyediakan pengkodean untuk jalur data urutan tertinggi sebagai prioritas pertama. Itu dibuat menggunakan teknologi Transistor-Transistor Logic (TTL). Ini adalah IC encoder 10 hingga 4. Pada artikel ini, kita akan melihat Diagram Pin IC 74147, Diagram Sirkuit Internal IC 74147, dan tabel Truth atau tabel fungsi IC 74147.


m. Decoder (IC 7447)

IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 

IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.


Konfigurasi Pin Decoder:
a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja dengan logika High=1.

b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang   diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan           aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.

c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low,   sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan     aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.

d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable    output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.

4. Percobaan [Kembali]

a. Prosedur Percobaan
  • Untuk membuat rangkaian ini, pertama siapkan semua alat dan bahan yang bersangkutan, dan ambil dari library proteus
  • Letakkan semua alat dan bahan sesuai dengan posisi peletakannya
  • Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh
  • Lalu jalankan rangkaian, jika tidak terjadi error, maka rangkaian bekerja
b. Rangkaian Simulasi


Pada saat kita menjemur pakaian pada ruang jemuran dengan atap ruang jemurannya otomatis atau kita ingin membuka atap ruangan kita maka apabila terdeteksi cahaya matahari maka sensor LDR akan terkena cahaya yang mengakibatkan resistansinya menjadi kecil. Arus mengalir dari battery menuju ke sensor LDR dan terukur tegangan output sensor sebesar 8.80 V. Arus juga menuju ke R1 dan akan masuk juga ke rangkaian op amp non inverting yang mana terjadi penguatan sebesar 1.2x sehingga tegangan outputnya menjadi 10.6 V. Lalu di umpankan ke gerbang OR yang mana inputnya berlogika 1 dan 0 yang akan menghasilkan output berlogika 1. Lalu dihambat arus yang sebesar dari gerbang OR dengan R4 10k sehingga tegangan basis transistor menjadi 0.81 V yang sudah mengaktivkan transistor Q1. Karena transistor Q1 aktiv maka arus akan mengalir dari battery menuju relay lalu terus ke kaki collector transistor dank e grounding. Karena tegangan relay cukup maka coil relay berpindah ke kiri sehingga menggerakan motor yang dianalogika sebagai pembuka atap jemuran otomatis. Disini juga digunakan encoder yang terhubung dengan keluaran gerbang OR dan ke kaki 1 pada encoder 74LS147 yang masukan dari awalnya itu akan berubah jika berlogika 0,sehingga output dari gerbang OR tadi perlu di NOT kan terlebih dahulu karena aktif rendah. dan keluarannya juga aktif rendah sehingga perlu di notkan kembali sebelum masuk ke kaki decoder. pada decoder inputnya merupakan aktif tinggi dan outputnya akan mengalir ke seven segment

Pada saat hari hujan maka sensor rain akan berlogika 1 yang mana outputnya diumpankan ke gerbang OR yang menghasilkan ouput berlogika 1 karena inputnya berlogika 1 dan 0. Untuk meredam arus yang tinggi masuk transistor dari gerbang OR maka digunakan R8 10k sehingga terukur tegangan basis transistor Q2 4.13V yang mana sudah mengaktifkan transistor Q2. Karena transistor Q2 aktiv maka arus mengalir dari battery menuju relay lalu masuk ke kaki collector transistor dan menuju grounding. Karena relay mendapatkan tegangan yang cukup maka coil relay berpindah ke kiri yang menghidupkan buzzer sebagai penanda hujan dan motor sebagai penutup tap jemuran otomatis. Disini juga digunakan IC 74193 sebagai coutdown pembuka atap jemuran yang mana menghitung dari decimal 3 sampai 0 lalu atap jemuran akan tertutup otomatis. Sehingga akan muncul angka decimal 2 pada seven segment dari hasil decoder yang mana menandakan hari hujan.


c. Video
1. Simulasi Rangkaian


2. Merangkai Rangkaian 


5. File Download [Kembali]

Rangkaian Simulasi [klik disini]
Data Sheet LDR [klik disini]
Data Sheet Touch Sensor [klik disini]
Data Sheet Rain Sensor [klik disini]
Data Sheet HIH 5030 [klik disini]
Data Sheet IC 74LS147[klik disini]
Data Sheet IC 7447 [klik disini]
Data Sheet Motor [klik disini]
Data Sheet resistor [klik disini]
Data Sheet Op Amp [klik disini]
Data Sheet Baterai [klik disini]
Data Sheet NPN [klik disini]
Data Sheet Relay [klik disini]
Data Sheet Diode [klik disini]
Data Sheet Potensiometer [klik disini]
Data Sheet Voltmeter [klik disini]
Datasheet Seven Segment [Klik Disini]
Library Touch Sensor [Klik Disini]
Library Rain Sensor [Klik Disini]

Tidak ada komentar:

Posting Komentar